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SUMMARY

We investigate the principal aspects of modelling the fully-developed turbulent swirling �ows based
on the algebraic two-equation (K–”) modelling approach. As a typical example, the characteristics of
modelling the turbulent swirling �ow in an axially rotating pipe based on the non-linear cubic K–”
models of Craft et al. (Int. J. Heat Fluid Flow 1996; 17:108–115), Shih et al. (Proceedings of 11th
Symposium on Turbulent Shear Flows, Grenoble, France, 1997; 31.1–31.6), and Huang and Ma (Phys.
Rev. E 2004; 70:036302) are analysed and discussed in detail. Moreover, we carry out the numerical
simulations by using the above three cubic models for the turbulent swirling �ows in an axially rotating
pipe and in an axisymmetric chamber, respectively, in comparison with the experimental data concerned.
The numerical results indicate that, in addition to the frame-indi�erent mean stretching tensor (the mean
strain-rate tensor), the frame-dependent mean spin tensor actually plays an e�ective and important role
as well in predicting the turbulent swirling �ows. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent swirling �ows pose a challenging problem of practical importance, which, as has
been well documented in the literature of turbulence modelling, is mainly due to the di�culty
in predicting the rotation e�ects. For example, the fully-developed turbulent �ow in an axially
rotating pipe, a typical turbulent swirling �ow, is one of the benchmark test cases for assessing
the performance of any newly proposed turbulence closure model in predicting the complex
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turbulent �ows. Over the past two decades, a number of important works on this interesting
and challenging problem have been conducted, experimentally, for instance, by Murakami and
Kikuyama [1], Kikuyama et al. [2], Anwer and So [3], Reich and Beer [4], Kitoh [5], Imao
et al. [6] and, recently, in numerical calculations, by Malin and Younis [7], Shih et al. [8],
Pettersson et al. [9], Speziale et al. [10], Wallin and Johansson [11], among others—in
particular, Orlandi and Fatica [12] carried out the direct numerical simulations. The turbulent
swirling �ow through a straight pipe, even in a fully-developed state, is in fact a rather
complex �ow—its prediction, due to the prevalent rotation e�ects induced by the rotating
pipe, proves to be very complicated and involved. Recently, it has been reported by Shih
et al. [8] that even though some quadratic K–” models that satisfy the realizability and
work quite successfully for some complex turbulent �ows with separation, e.g. the quadratic
model of Shih et al. [13], they are not able to capture the rotation e�ect of the mean swirl
velocity. Indeed, the weakness of the linear eddy-viscosity K–” model, as pointed out by
Launder [14], cannot be recti�ed by simply introducing quadratic terms to the modelling of
the Reynolds stress. By contrast, the second-order (moment) closure models can predict the
rotation e�ect of the mean swirl velocity, though they are computationally costly and in some
cases even far from being accurate as shown in comparison with the experimental data (see,
e.g. References [7, 9]). Generally speaking, in order to capture the rotation e�ects of the
turbulent swirling �ows based on the algebraic two-equation (K–”) modelling approach, one
has to resort to a cubic model, e.g. the model of Craft et al. [15] and the model of Shih
et al. [8].
In this work, �rst, we shall analyse the principal aspects of modelling the fully-developed

turbulent �ow in an axially rotating circular pipe based on the algebraic two-equation (K–”)
modelling approach. The characteristics of modelling this typical turbulent swirling �ow based
on the non-linear cubic K–” models of Craft et al. [15] and Shih et al. [8], and the non-linear
cubic K–” model recently developed by Huang and Ma [16] will be discussed in detail. It is
shown that the fully-developed turbulent �ow in an axially rotating pipe is by nature a two-
point boundary value problem and its modelling necessarily requires the contributions from
the cubic terms in a non-linear K–” model. In fact, all the previously proposed linear and non-
linear quadratic K–” models, e.g. the standard K–” model, the linear K–” model of Yoshizawa
and Nisizima [17], the quadratic K–” model of Speziale [18], the quadratic K–” model of
Shih et al. [13], and the quadratic K–” model developed in Reference [19] as an illustrative
example to exemplify a general approach to modelling the Reynolds stress, are incapable of
capturing the rotation e�ects of the mean swirl velocity—actually, they all predict a solid-
body-rotation mean swirl velocity pro�le, in contrast to the experimental results. However, it
is shown that any cubic term in a non-linear model will combine the preceding linear terms, as
a joint e�ort, to predict the rotation e�ect of the mean swirl velocity. The numerical results for
the mean swirl (circumferential) velocity, the mean axial velocity, and the Reynolds stresses
using the afore-mentioned three cubic models [8, 15, 16] are presented in comparison with the
experimental data of Imao et al. [6]. Moreover, to further assess the performance of these
three cubic models in predicting the turbulent swirling �ow in an axisymmetric chamber, we
shall carry out numerical simulations and make a comparison with the experimental results
of Ahmed and Nejad [20]. The numerical results for these two typical turbulent swirling
�ows indicate that, in addition to the mean stretching tensor (the mean strain-rate tensor), the
mean spin tensor actually plays an e�ective role as well in predicting the turbulent swirling
�ows.
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2. ASPECTS OF MODELLING THE FULLY-DEVELOPED TURBULENT
FLOW IN AN AXIALLY ROTATING PIPE

For a fully-developed turbulent �ow of an incompressible Newtonian �uid in an axially rotat-
ing circular pipe, in which case the mean velocity �eld U=U�(r)e�+Uz(r)ez and the angular
velocity of the rotating pipe �=�ez, where �=const., in cylindrical coordinates (r; �; z)
(note that Ur =0 is a direct consequence of the continuity equation), the ensemble-averaged
Navier–Stokes equations simplify to

−@
�P
@z
+ �∇2Uz − d�rz

dr
− 1
r
�rz = 0 (1)

�
(

∇2U� − U�
r2

)
− d�r�
dr

− 2
r
�r� = 0 (2)

where �P is the modi�ed mean pressure containing the body force potential (note that here
@ �P=@z=const.), � is the kinematic viscosity, and the Laplacian simpli�es to

∇2 =
1
r
d
dr

(
r
d
dr

)

By rearrangement and integration, Equation (2) becomes

�
d
dr

(
U�
r

)
=
�r�
r

(3)

The Reynolds stress tensor � in cylindrical coordinates reads as follows:

(�)=

⎛
⎜⎜⎝
�rr �r� �rz

��r ��� ��z

�zr �z� �zz

⎞
⎟⎟⎠ (4)

Clearly, given the constitutive equations for �r� and �rx, say, an algebraic two-equation (K–”)
model, then Equations (1) and (3), in conjunction of the conventional K and ” equations,
constitute in fact a two-point boundary value problem.
In this case, the mean stretching tensor D= 1

2[gradU + (gradU)
T] and the mean spin

tensor W= 1
2[gradU − (gradU)T] are as follows in physical components:

(D)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2

(
dU�
dr

− U�
r

)
1
2
dUz
dr

1
2

(
dU�
dr

− U�
r

)
0 0

1
2
dUz
dr

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)
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and

(W)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
2

(
dU�
dr

+
U�
r

)
−1
2
dUz
dr

1
2

(
dU�
dr

+
U�
r

)
0 0

1
2
dUz
dr

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

It has been reported in the literature that the standard K–” model fails to capture the
rotation e�ects of the swirling �ow, producing a solid-body-rotation mean circumferential
(swirl) velocity U�, which is inconsistent with the experimental results. In fact, it can be
shown that all the linear K–” models and the previously proposed non-linear quadratic K–”
models predict the same solid-body-rotation mean swirl velocity U� as does the standard
K–” model. Here, without loss of generality, let us consider two linear and three non-linear
(quadratic) K–” models, for example, to see the fact.

(1) The standard K–” model (SKE) (see Reference [21]):

�= 2K
3
1− 2C�K

2

”
D (7)

where C�=0:09, and 1 denotes the unit tensor hereinafter.
(2) The linear K–” model of Yoshizawa and Nisizima [17]:

�= 2K
3
1− 2�t

1 + CG1(K=”)(D=Dt) ln �t
D (8)

where �t =C�K2=”, C�=0:09, and CG1 = 1:3.
(3) The non-linear quadratic K–” model of Speziale [18]:

�= 2K
3
1− 2C�K

2

”
D+ 4CDC2�

K3

”2

[
D2 − 1

3
tr(D2)1

]
+ 4CEC2�

K3

”2

[ �
D− 1

3
tr(

�
D)1

]
(9)

where C�=0:09, CD=CE =1:68, and
�
D=(D=Dt)D − (grad �v)D − D(grad �v)T is the

Oldroyd derivative of D.
(4) The non-linear quadratic K–” model of Shih et al. [13]:

�= 2K
3
1− 2C∗

�
K2

”
D− �2K

3

”2
[WD−DW] (10)

where

C∗
� =

1
A0 + A∗

s U ∗(K=”)
and �2 =

2
√
1− 9C∗2

� tr(D2)(K=”)2

1 + 6
√

−tr(D2) tr(W2)(K=”)2

in which A0 = 6:5, A∗
s =

√
6 cos�, �= 1

3 arccos(
√
6 tr(D3)=[tr(D2)]3=2), and the shear

parameter U ∗=
√
tr(D2)− tr(W2).
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(5) A non-linear quadratic K–” model given in Reference [19]:

�= 2K
3
1− 2C�K

2

�
D+ �1C2�

K3

�2

[
D2 − 1

3
tr(D2)1

]
− �2C2�

K3

�2
◦
D

− �3C�K
2

�3
(K�̇− 2K̇�)D (11)

where C�=0:09, �1 = 2:896, �2 = 2:784, and �3 = 0:843.
In this turbulent swirling �ow, the above �ve models actually give the same form

for �r�, viz.

�r�= − 2�TDr� (12)

where �T is the turbulent (eddy) viscosity, which changes from one model to another
as seen.
For the standard K–” model:

−2�T = − 2C�K
2

”
(13)

For the linear K–” model of Yoshizawa and Nisizima [17]:

−2�T = 2�t
1 + CG1(K=”)(D=Dt) ln �t

(14)

For the non-linear quadratic K–” model of Speziale [18]:

−2�T = − 2C�K
2

”
(15)

For the non-linear quadratic K–” model of Shih, Zhu, and Lumley (SZL) [13]:

−2�T = − 2C∗
�
K2

”
(16)

And, for the non-linear quadratic K–” model of Huang [19]:

−2�T = − 2C�K
2

”
− �3C�K

2

�3
(K�̇− 2K̇�) (17)

Therefore, noting that Dr�= 1
2r(d=dr)(U�=r), substituting Equation (12) into Equa-

tion (3) thus gives

(�+ �T )
d
dr

(
U�
r

)
=0 (18)

Equation (18), together with the no-slip boundary condition, U�(r)|r=R=R�, readily
yields

U�= r� (19)

namely, a solid-body-rotation mean swirl velocity U�, which, however, is in contra-
diction to the experimental and the DNS results (see, e.g. References [6, 12]).
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Thus, it is clear that, in contrast to the second-moment closure models based on
modelling the Reynolds stress transport equation, which as shown are capable of
predicting the mean swirl velocity’s rotation e�ect, e.g. the model of Fu et al. [22]
(see also Reference [7]), in the algebraic two-equation (K–”) modelling approach,
one has to resort to the non-linear cubic K–” models in order to predict the rotation
e�ects and better describe the mean swirl velocity U� in an axially rotating turbulent
pipe �ow. In the following, we shall use the non-linear cubic K–” model of Craft
et al. [15], the non-linear cubic K–” model of Shih et al. [8], and the non-linear cubic
K–” model recently developed by Huang and Ma [16], respectively, to carry out the
numerical simulations and compare the results in detail with the experiments.
To this end, we shall �rst analyse the characteristics of these three models in pre-

dicting the mean swirl velocity U� in axially rotating turbulent pipe �ow—namely, the
detailed features of �r� given by each model, which plays a key role in predicting the
rotation e�ects on U� as shown in Equation (3). Now, let us consider:

(6) The non-linear cubic K–” model of Craft et al. (CLS) [15]:

�= 2K
3
1− 2C̃� K

2

”
D+ �1

K3

”2

[
D2 − 1

3
tr(D2)1

]
+ �2

K3

”2
(WD−DW)

+�3
K3

”2

[
W2 − 1

3
tr(W2)1

]
− �1K

4

”3
tr(D2)D− �2K

4

”3
tr(W2)D

− �3K
4

”3

[
W2D+DW2 − 2

3
tr(W2D)1

]
− �4K

4

”3
(WD2 −D2W) (20)

where

C̃�=
0:3(1− exp[−0:36= exp(−0:75	)])

1 + 0:35	3=2
; 	= max(S̃ ; �̃)

in which

S̃=(K=”)[2tr(D2)]1=2; �̃= (K=”)[−2tr(W2)]1=2

and �1 = − 0:4C̃�, �2 = 0:4C̃�, �3 = − 1:04C̃�, �1 = �2 = 40:0C̃
3
� , �3 = 0, and �4 =

− 80:0 C̃3� . Note that, since �3 = 0, the cubic term with (W2D+DW2) in fact makes
no contribution to the numerical simulations.

(7) The non-linear cubic K–” model of Shih et al. [8]:

�= 2K
3
1− 2�TD− A3K

3

”2
[DW −WD]

+ 2A5
K4

”3

[
WD2 −D2W+WDW − 1

3
tr(WDW)1− 1

2
(trD2)D

]
(21)
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where the coe�cients

�T =C�f�
K2

”
; A3 =

√
1− 9

2
C2�

(
KS∗

”

)2

0:5 +
3
2
K3

”2
�∗S∗

; A5 =
1:6�T

K4

”3
7trD2 + trW2

4

in which C�= 1
4:0 + As(KU∗=”) , f�=[1 − exp(−a1RK − a3R3K − a5R5K)]

1=2, As=
√
6 cos�,

�= 1
3 arccos(

√
6trD3=(

√
trD2 )3); U ∗=

√
trD2 + trW2, a1 = 1:7 ∗ 10−3, a3 = 1 ∗ 10−9,

a5 = 5 ∗ 10−10, and RK =
√
Ky=�. Note that here the coe�cient A5 appearing in the

cubic term was identi�ed based on the experimental data of fully-developed rotating
pipe �ow.

(8) The non-linear cubic K–” model of Huang and Ma [16]:

�= 2K
3
1− 2C�K

2

”
D+ �1C2�

K3

”2

[
D2 − 1

3
tr(D2)1

]
− �2C2�

K3

”2
◦
D− �3C�K

2

”3
(K”̇− 2K̇”)D

+ �4C2�
K3

”2

[
W2 − 1

3
tr(W2)1

]
+ �5C2�

K3

”2
[DW −WD]− �6C3�

K4

”3
[

◦
DW −W

◦
D]

− �7C�K
4

”3

[
D

◦
D+

◦
DD− 2

3
tr(D

◦
D)1

]
(22)

where C�=0:09, �1 = 2:896, �2 = 2:784, �3 = 0:843, �4 = 0:8482, �5 = 0:6344, �6 =
0:7767, and �7 = 0:6885. The coe�cients �1; : : : ; �6 were identi�ed based on the
experimental results of homogeneous turbulent shear �ow of Tavoularis and Corrsin
[23] (see References [16, 19]); and the coe�cient �7 of the last term in Equation (22), a
term in the same form as that in the CLS model, is determined in this work by making
use of the experimental data of Imao et al. [6]. For simplicity in notation and without
confusion, hereinafter, an overdot ˙( ) is also used to denote the material time derivative
associated with the mean velocity �v, i.e. D=Dt, e.g. (D=Dt)K = K̇ =(@=@t)K+(gradK)·
�v. Here,

◦
D=(D=Dt)D+DW−WD is the Jaumann derivative of the mean stretching

tensor D.

It is seen from Equations (1) and (3) that only �r� and �rz contribute to the modelling of
the mean swirl velocity U�(r) and the mean axial velocity Uz(r), respectively. After a bit
cumbersome but straightforward algebra, we obtain:
For the model of Craft et al. (CLS) [15], there are

�r� =
[
−2C̃� K

2

”
+ �1

K4

”3
(trD2) + �2

K4

”3
(trW2)

]
Dr� − �4K

4

”3
(WD2 −D2W)r�

=
1
2

[
−2C̃� K

2

”
+
1
2
�1
K4

”3

{(
dU�
dr

− U�
r

)2
+

(
dUz
dr

)2}
− 1
2
�2
K4

”3

{(
dU�
dr

+
U�
r

)2

+
(
dUz
dr

)2}](
dU�
dr

− U�
r

)
− 1
4
�4
K4

”3

(
U�
r

)(
dUz
dr

)2
(23)
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�rz =
[
−2C̃� K

2

”
+ �1

K4

”3
(trD2) + �2

K4

”3
(trW2)

]
Drz − �4K

4

”3
(WD2 −D2W)rz

=
1
2

[
−2C̃� K

2

”
+
1
2
�1
K4

”3

{(
dU�
dr

− U�
r

)2
+

(
dUz
dr

)2}
− 1
2
�2
K4

”3

{(
dU�
dr

+
U�
r

)2

+
(
dUz
dr

)2} ](
dUz
dz

)
− 1
4
�4
K4

”3

(
U�
r

)(
dUz
dr

)(
U�
r

− dU�
dr

)
(24)

For the model of Shih et al. [8], we have

�r� =−2�TDr� − A5K
4

”3
(trD2)Dr� + 2A5

K4

”3
(WD2 −D2W+WDW)r�

=−
{
�T +

A5
4
K4

”3

[(
dU�
dr

)2
− 2

(
dU�
dr

)(
U�
r

)
+

(
U�
r

)2
+

(
dUz
dr

)2]}(
dU�
dr

− U�
r

)

+
1
4
A5
K4

”3

[(
dU�
dr

)3
+

(
dU�
dr

)2(U�
r

)
−

(
dU�
dr

)(
U�
r

)2
−

(
U�
r

)3

+
(
dU�
dr

)(
dUz
dr

)2
+ 3

(
U�
r

)(
dUz
dr

)2]

=−�T
(
dU�
dr

− U�
r

)
+A5

K4

”3

[(
U�
r

)(
dUz
dr

)2
−

(
dU�
dr

)(
U�
r

)2
+

(
dU�
dr

)2(U�
r

)]
(25)

�rz =−2�TDrz − A5K
4

”3
(trD2)Drz + 2A5

K4

”3
(WD2 −D2W+WDW)rz

=−
{
�T +

A5
4
K4

”3

[(
dU�
dr

)2
− 2

(
dU�
dr

)(
U�
r

)
+

(
U�
r

)2
+

(
dUz
dr

)2]}(
dUz
dr

)

+
1
4
A5
K4

”3

[(
U�
r

)2(dUz
dr

)
− 2

(
dU�
dr

)(
U�
r

)(
dUz
dr

)

+
(
dU�
dr

)2(dUz
dr

)
+

(
dUz
dr

)3]

=−�T
(
dUz
dr

)
(26)
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And, for the model of Huang and Ma [16], abbreviated to HM model hereinafter (note that
in this case (Ḋ)r�=(Ḋ)rz= K̇ = ”̇=0), we arrive at

�r� =−2C�K
2

”
Dr� − �6C3�

K4

”3
[

◦
DW −W

◦
D]r� − �7C3�

K4

”3

[
D

◦
D+

◦
DD− 2

3
tr(D

◦
D)1

]
r�

=−2C�K
2

”
Dr� − �6C3�

K4

”3
[DW2 − 2WDW+W2D]r� − �7C3�

K4

”3
[D2W −WD2]r�

=−C�K
2

”

(
dU�
dr

− U�
r

)
+
1
2
�6C3�

K4

”3

[(
dU�
dr

)3
+

(
dU�
dr

)2(U�
r

)
−

(
dU�
dr

)(
U�
r

)2

−
(
U�
r

)3
+

(
dU�
dr

)(
dUz
dr

)2
+
1
2

(
U�
r

)(
dUz
dr

)2]
+
1
4
�7C3�

K4

”3

(
U�
r

)(
dUz
dr

)2
(27)

�rz =−2C�K
2

”
Drz − �6C3�

K4

”3
[

◦
DW −W

◦
D]rz − �7C3�

K4

”3

[
D

◦
D+

◦
DD− 2

3
tr(D

◦
D)1

]
rz

=−2C�K
2

”
Drz − �6C3�

K4

”3
[DW2 − 2WDW+W2D]rz − �7C3�

K4

”3
[D2W −WD2]rz
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(28)

Obviously, the cubic terms appearing in the above three models play a key role in predicting
the mean swirl velocity U�—indeed, neglecting them will lead to the same solid-body-rotation
mean swirl velocity U� as predicted by the standard K–” model. Moreover, it is interesting to
see that these cubic terms in Equations (23), (25), and (27) now actually combine the linear
terms in each model, respectively, as a whole, to predict the mean swirl velocity U�.
Let us compare the contributing cubic terms appearing in the above three cubic models.
The cubic terms (implicit and explicit) in the CLS model:[

�1
K4

”3
(trD2) + �2

K4

”3
(trW2)

]
D− �4K

4

”3
(WD2 −D2W) (29)

The cubic terms (implicit and explicit) in the model of Shih et al. [8]:

−A5K
4

”3
(trD2)D+ 2A5

K4

”3
(WD2 −D2W+WDW) (30)

The cubic terms (explicit) in the HM model:

−�6C3�
K4

”3
[DW2 − 2WDW+W2D]− �7C3�

K4

”3
[D2W −WD2] (31)
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A comparison of the above three equations indicates that the HM model contains more
cubic terms involving the mean spin tensor W and its interaction with the mean stretching
tensor D than the CLS model and the model of Shih et al. [8]. Moreover, it is seen from
Equations (24) and (28) that, in both the CLS model and the HM model, the cubic terms
in each model make a direct contribution to modelling the rotation e�ect of the mean axial
velocity Uz, whereas the cubic terms in the model of Shih et al. [8] make no contributions
in this regard—in fact, the prediction of Uz based on their model relies on the linear term of
the mean strain-rate tensor, i.e. −2�TDrz, as seen in Equation (26), in which a generalized
eddy viscosity �T , being a function of trD2 and trW2, accounts for some non-linear e�ects
of the mean deformation of turbulence, however.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Numerical method

In the following, we shall make use of the conventional modelled K equation and ” equation
for numerical calculations, which read, respectively,

K̇ =−�ij @�vi@xj − ”+ @
@xi

(
�T

K
@K
@xi

)
+ �∇2K (32)

”̇=−C”1 ”K �ij
@�vi
@xj

− C”2 ”
2

K
+
@
@xi

(
�T

”
@”
@xi

)
+ �∇2” (33)

where �T =C�K2=”, C�=0:09, C”1 = 1:44, C”2 = 1:92, 
K =1:0, and 
”=1:3.
Throughout our numerical calculations, the �nite-volume method with non-orthogonal grids

has been used; variable storage is co-located and cell-centred, with Rhie–Chow interpolation
for cell-face mass �uxes (see also References [24, 25]). The SIMPLE pressure-correction
algorithm is adopted to obtain the pressure �eld. The convection terms appearing in all
of the equations concerned, e.g. the averaged Navier–Stokes equations, are discretized by a
hybrid technique of the �rst-order upwind scheme and the second-order central di�erencing
scheme, while the di�usion terms are approximated by the second-order central di�erencing
scheme. Here, Stone’s strong implicit procedure (SIP) method is used together with the under-
relaxation factors. The mean-�ow equations and the turbulent transport equations are solved
by uncoupled approach. This algorithm has been found to yield rapid convergence to steady
state. Convergence is judged by monitoring the magnitude of the absolute residual source of
mass and momentum, normalized by the respective inlet �uxes. The iteration is continued
until all above residuals fall below 0.05%.
In computation of the wall-bounded turbulent shear �ows, for example, the boundary layer

�ow and the separated �ow, it is important to carefully deal with the near-wall turbulence
behaviour. Usually, there are two kinds of methods, both of which are popular in practice—
one is the so-called wall function, the other is the damping function. In our computations,
we have adopted the damping function given in Reference [15]. Moreover, su�ciently �ne
grids are employed to ensure that y+¡0:5 along the �rst grid-line from the wall for the use
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of the damping function. Our numerical results for the following test cases indicate that the
application of the afore-mentioned damping function appears to be successful.

3.2. Test case 1. The fully-developed turbulent �ow in an axially rotating pipe

In this test case, we shall compare our numerical results with the experimental data of Imao
et al. [6] in their experimental studies of the rotation e�ects on the turbulent swirling �ow
induced by the rotating pipe (see the experimental apparatus shown in Figure 1).
Here, the inner diameter D of the pipe is 30mm. At the entrance of the pipe a uniform

axial velocity pro�le is speci�ed. With the pipe’s rotating, the velocity components along
the axial, radial, and circumferential directions are gradually developed, and at the location
L=120D the turbulent �ow becomes fully-developed. The control parameter of the �ow is a
non-dimensional rotation rate de�ned by

S=Ww=Um

where Ww is the tangential velocity of the pipe wall, and Um is the bulk mean axial velocity.
In the present numerical computation S=0:5. The Reynolds number based on Um and D
is 2× 104. A 200× 120 highly-stretched non-uniform grid has been used in our numerical
calculations, ensuring y+¡0:5 along the �rst grid-line from the wall.
The computational results for the mean tangential velocity pro�le are shown in Figure 2.

As has been noted in our previous analysis, the numerical simulations clearly indicate that the
linear eddy-viscosity turbulence model (SKE) predicts a solid-body-rotation mean tangential
velocity and thus fails to correctly describe the rotation e�ects on the turbulence as observed
in experiments. By contrast, all of the three non-linear cubic models produce a parabolic-like
tangential velocity pro�le, in good agreement with the experimental data. It appears that the
HM model performs better than the other two cubic models. The mean axial velocity is given
in Figure 3. It is seen that the mean axial velocity is not sensitive to the turbulence model. The
di�erences of the results obtained by using di�erent models are not substantial—all the three
cubic models agree pretty well with the experimental data. Overall, the HM model outdoes a
little bit the other two cubic models, which may be due to the fact that the cubic terms of the
model contains more mean spin tensors that represent the interaction between the mean spin
tensor W and the mean stretching tensor D, as mentioned earlier. Note that in addition to the
frame-indi�erent mean stretching tensor, the frame-dependent mean spin tensor is expected
to play an e�ective role in turbulence modelling at large (see References [16, 26]), which is
physically in conformity with the ensemble-averaged Navier–Stokes equations.

Figure 1. Geometry of the fully-developed rotating pipe �ow.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:285–304



296 Y.-N. HUANG, H.-Y. MA AND H.-J. CHU

Figure 2. Tangential velocity pro�le.

Figure 3. Axial velocity pro�le.
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3.3. Test case 2. The turbulent swirling �ow in an axisymmetric chamber

It is seen from the previous test case that the contributions of the cubic terms in a non-linear
cubic K–” model are signi�cant in predicting the rotation e�ects on the swirling turbulence.
Here, to further assess the performance of these cubic models, we shall carry out numerical
simulations for another typical turbulent swirling �ow, the swirling �ow in an axisymmetric
chamber, and make a comparison with the experimental data of Ahmed and Nejad [20]. The
�ow geometry is shown in Figure 4. The swirling �ow produced by the upstream swirler enters
the abruptly expanded axisymmetric chamber. The incoming axial velocity of the central line
at the entrance is Uref = 19:2±0:4m=s, based on which and the inner diameter of the chamber
the Reynolds number is 1:25× 105. The rotation rate is de�ned as

S=
(∫ R

0
UWr2 dr

)/(
R

∫ R

0
U 2r dr

)

where U and W are the axial and tangential velocity respectively and R is the chamber’s
radius. In the present numerical simulation S=0:5, thus, the rotation e�ect is not very strong.
Here, a 180× 120 highly-stretched non-uniform grid is used, and the grids are densi�ed in
the region near the chamber wall and the separated zone. The distance of the �rst grid line
to the wall y+ is smaller than 0:5. The computational condition at the incoming boundary is
extrapolated from the experimental data at x=H =0:38 (see Figure 4).
Figure 5 gives the tangential velocity pro�les at six horizontal locations: x=H =2; 3; 5; 8; 10,

and 15, respectively. It is seen that near the central region around the symmetric axis of the
chamber, the tangential velocity obtained by using the HM model is in very good agreement
with the experimental data, and correctly predicts the rotation e�ects on turbulence. The results
given by the CLS model and the model of Shih et al. [8] do not have a signi�cant advantage
over the linear eddy-viscosity model. It is worth noting that the coe�cients in both models
were calibrated by the experimental data of the fully-developed turbulent �ow in a rotating
pipe, in which case the rotation e�ect is dominant while the shear stress is relatively weak—as
a result, the rotation e�ect had been fully estimated and taken into account when determining
the model coe�cients. By contrast, in the present test case, the rotation e�ect is not very
strong but physically the interaction between the rotation and the shear stress becomes more
signi�cant and important—thus, this may partly explain why in this case the results of the
CLS model and the model of Shih et al. [8] are not as satisfactory as they do in the test case 1

Figure 4. Geometry of the swirling �ow in an axisymmetric chamber.
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Figure 5. The tangential velocity pro�le in the axisymmetric chamber.

in which case the rotation e�ect is dominant. In the region near the chamber wall the �ow
becomes very complicated because of the in�uence of the separated vortex near the corner,
all of the three cubic models fail to satisfactorily predict the mean velocity distribution, which
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Figure 6. The axial velocity pro�le in the axisymmetric chamber.
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Figure 7. The radial velocity pro�le in the axisymmetric chamber.
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Figure 8. The pro�le of the Reynolds shear stress.
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Figure 9. The streamline in the axisymmetric chamber.

may be partly due to the relatively poor performance of the K equation and the ” equation
under this critical situation with the occurrence of �ow separation, among other things. In
addition, the axial velocity pro�les at six locations are presented in Figure 6. It is shown that
a recirculation zone is formed near the central region, which is called the free vortex and
recognized as a typical characteristic of this kind of swirling �ow. It appears that the results
given by the HM model are in better agreement with experimental data than the other two
cubic models.
For the model of Shih et al. [8], near the axis and the wall, the recovery of the mean axial

velocity is fast, due to the depression e�ect of the rotation on turbulence being overestimated.
For the HM model, in the region near the wall the shear stress is overestimated, the velocity
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recovery is slow and, consequently, the computed mean axial velocity becomes smaller than
the experimental result.
The mean radial velocity pro�les are presented in Figure 7. The model of Shih et al. [8]

predicts better results for the �rst three locations, while the CLS model and the HM model
perform a bit better in the region of the central part.
The pro�le of the Reynolds shear stress is shown in Figure 8. Since the magnitude of the

Reynolds shear stress is rather small, the di�erences between the results obtained by using
the three cubic models are not very large. In the forced vortex and the free vortex region, the
numerical results based on the three cubic models are all better than that obtained by using
the linear model.
Finally, the calculated streamline patterns based on four di�erent turbulence models are

shown in Figure 9. It is seen that the linear model fails to predict the central recirculation
zone. The model of Shih et al. [8] underestimates the forced vortex near the corner, due to
the velocity recovery being fast and, as a result, the position of the reattachment point is a
little bit over-predicted.

4. CONCLUDING REMARKS

We have shown that the fully-developed turbulent swirling �ow in an axially rotating pipe
is by nature a two-point boundary value problem, and the prediction of the rotation e�ects
based on the algebraic two-equation (K–”) modelling approach requires a non-linear cubic
model as a necessary condition. The numerical simulations for the fully-developed turbulent
swirling �ow in an axially rotating pipe and the fully-developed turbulent swirling �ow in
an axisymmetric chamber using the cubic models of Craft et al. [15], Shih et al. [8], and
Huang and Ma [16] indicate that, in addition to the mean strain-rate tensor, the mean spin
tensor actually plays an important role as well. It is interesting to see that the HM model,

which employs the Jaumann derivative of the mean stretching tensor, i.e.
◦
D, to account for

some history e�ects of turbulence, yields a number of results better than or comparable to
that obtained by using the other two previously proposed cubic models. Moreover, since the
coe�cients �1, �2; : : : ; �7 in the model are functions of the invariants given in Reference [16],
it is possible to modify the model with recourse to the experimental and the DNS data
concerned so that it can perform better in modelling the complex turbulent �ows, noting that
the conventional K and ” equations also need to be appropriately modi�ed so as to better
describe the characteristics of the near-wall behaviour of turbulence, like other closure models
proposed so far in the literature. It should be noted that the present cubic model has the same
number of model coe�cients as that in the model of Craft et al. [15]; moreover, �1, �2; : : : and
�7 are all determined based on the experimental data of Tavoularis and Corrsin [23] (see also
Reference [16]) and that of Imao et al. [6]. Of course, just like all the previously proposed
non-linear models, the present model is far from perfect. Nonetheless, we believe that in
the near future more and more well-performed models will be developed to better capture
the complex phenomena of turbulence. In fact, looking back on the history of the closure
problem of turbulence originated from taking the ensemble average on the Navier–Stokes
equations, all the past experience of turbulence modelling shows that there doesn’t exist a
unique or universal closure model for turbulence but rather, ever since Prandtl proposed his
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pioneering mixing-length model in 1925, a better closure model, one after another, improved
yet imperfect, has always been possible to come into play in turbulence modelling.
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